Solar eclipse of December 4, 1983

From Justapedia, unleashing the power of collective wisdom
Jump to navigation Jump to search
Solar eclipse of December 4, 1983
SE1983Dec04A.png
Map
Type of eclipse
NatureAnnular
Gamma0.4015
Magnitude0.9666
Maximum eclipse
Duration241 sec (4 m 1 s)
Coordinates0°54′N 4°42′W / 0.9°N 4.7°W / 0.9; -4.7
Max. width of band131 km (81 mi)
Times (UTC)
Greatest eclipse12:31:15
References
Saros132 (44 of 71)
Catalog # (SE5000)9473

An annular solar eclipse occurred at the Moon's descending node of the orbit on December 4, 1983. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Cape Verde, Annobón Island of Equatorial Guinea, Gabon, the People's Republic of Congo (today's Republic of Congo), Zaire (today's Democratic Republic of Congo), northern Uganda, southern Sudan (today's South Sudan), northwestern Kenya, Ethiopia and Somalia. The Sun's altitude was 66°. Occurring 6.5 days before apogee (Apogee on December 11, 1983), the Moon's apparent diameter was near the average diameter.

Related eclipses

Eclipses in 1983

Solar eclipses of 1982–1985

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Note: Partial solar eclipses on January 25, 1982 and July 20, 1982 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1982–1985
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 SE1982Jun21P.png
1982 June 21
Partial
-1.21017 122 SE1982Dec15P.png
1982 December 15
Partial
1.12928
127 SE1983Jun11T.png
1983 June 11
Total
-0.49475 132 SE1983Dec04A.png
1983 December 4
Annular
0.40150
137 SE1984May30A.png
1984 May 30
Annular
0.27552 142
Solar eclipse of 22 November 1984.JPG
Partial from Gisborne, NZ
SE1984Nov22T.png
1984 November 22
Total
-0.31318
147 SE1985May19P.png
1985 May 19
Partial
1.07197 152 SE1985Nov12T.png
1985 November 12
Total
-0.97948

Saros 132

This eclipse is a part of Saros cycle 132, repeating every 18 years, 11 days, containing 71 events. The series started with partial solar eclipse on August 13, 1208. It contains annular eclipses from March 17, 1569 through March 12, 2146, hybrid on March 23, 2164 and April 3, 2183 and total eclipses from April 14, 2200 through June 19, 2308. The series ends at member 71 as a partial eclipse on September 25, 2470. The longest duration of annular was 6 minutes, 56 seconds on May 9, 1641, and totality will be 2 minutes, 14 seconds on June 8, 2290. All eclipses in this series occurs at the Moon’s descending node.

Series members 28–50 occur between 1690 and 2100:
28 29 30
SE1695Jun11A.png
June 11, 1695
SE1713Jun22A.png
June 22, 1713
SE1731Jul04A.png
July 4, 1731
31 32 33
SE1749Jul14A.png
July 14, 1749
SE1767Jul25A.png
July 25, 1767
SE1785Aug05A.png
August 5, 1785
34 35 36
SE1803Aug17A.png
August 17, 1803
SE1821Aug27A.png
August 27, 1821
SE1839Sep07A.png
September 7, 1839
37 38 39
SE1857Sep18A.png
September 18, 1857
SE1875Sep29A.png
September 29, 1875
SE1893Oct09A.png
October 9, 1893
40 41 42
SE1911Oct22A.png
October 22, 1911
SE1929Nov01A.png
November 1, 1929
SE1947Nov12A.png
November 12, 1947
43 44 45
SE1965Nov23A.png
November 23, 1965
SE1983Dec04A.png
December 4, 1983
SE2001Dec14A.png
December 14, 2001
46 47 48
SE2019Dec26A.png
December 26, 2019
SE2038Jan05A.png
January 5, 2038
SE2056Jan16A.png
January 16, 2056
49 50
SE2074Jan27A.png
January 27, 2074
SE2092Feb07A.png
February 7, 2092

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Inex series members between 1901 and 2100:
SE1926Jan14T.png
January 14, 1926
(Saros 130)
SE1954Dec25A.png
December 25, 1954
(Saros 131)
SE1983Dec04A.png
December 4, 1983
(Saros 132)
SE2012Nov13T.png
November 13, 2012
(Saros 133)
SE2041Oct25A.png
October 25, 2041
(Saros 134)
SE2070Oct04A.png
October 4, 2070
(Saros 135)
SE2099Sep14T.png
September 14, 2099
(Saros 136)

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events, progressing from north to south between July 11, 1953 and July 11, 2029
July 10–12 April 29–30 February 15–16 December 4–5 September 21–23
116 118 120 122 124
SE1953Jul11P.png
July 11, 1953
SE1957Apr30A.png
April 30, 1957
SE1961Feb15T.png
February 15, 1961
SE1964Dec04P.png
December 4, 1964
SE1968Sep22T.png
September 22, 1968
126 128 130 132 134
SE1972Jul10T.png
July 10, 1972
SE1976Apr29A.png
April 29, 1976
SE1980Feb16T.png
February 16, 1980
SE1983Dec04A.png
December 4, 1983
SE1987Sep23A.png
September 23, 1987
136 138 140 142 144
SE1991Jul11T.png
July 11, 1991
SE1995Apr29A.png
April 29, 1995
SE1999Feb16A.png
February 16, 1999
SE2002Dec04T.png
December 4, 2002
SE2006Sep22A.png
September 22, 2006
146 148 150 152 154
SE2010Jul11T.png
July 11, 2010
SE2014Apr29A.png
April 29, 2014
SE2018Feb15P.png
February 15, 2018
SE2021Dec04T.png
December 4, 2021
SE2025Sep21P.png
September 21, 2025
156 158 160 162 164
SE2029Jul11P.png
July 11, 2029

Notes

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

References