Electrotaxis

From Justapedia, unleashing the power of collective wisdom
Jump to navigation Jump to search

Electrotaxis, also known as galvanotaxis, is the directed motion of biological cells or organisms guided by an electric field or current.[1] The directed motion of electrotaxis can take many forms, such as; growth, development, active swimming, and passive migration.[2][3] A wide variety of biological cells can naturally sense and follow DC electric fields. Such electric fields arise naturally in biological tissues during development and healing.[4][5] These and other observations have led to research into how applied electric fields can impact wound healing.[6][7][8] An increase in wound healing rate is regularly observed and this is thought to be due to the cell migration and other signaling pathways that are activated by the electric field.[9] Additional research has been conducted into how applied electric fields impact cancer metastasis, morphogenesis, neuron guidance, motility of pathogenic bacteria, biofilm formation, and many other biological phenomena.[3][10][11][12]

History

In 1889, German physiologist Max Verworn applied a low-level direct current to a mixture of bacterial species and observed that some moved toward the anode and others moved to the cathode.[13] Just two years later, in 1891, Belgian microscopist E. Dineur made the first known report of vertebrate cells migrating directionally in a direct current, a phenomenon which he coined galvanotaxis.[14] Dineur used a zinc–copper cell to apply a constant current to the abdominal cavity of a frog via a pair of platinum electrodes. He found that inflammatory leukocytes aggregated at the negative electrode. Since these pioneering studies, a variety of different cell types and organisms have been shown to respond to electric fields.[15]

Mechanism

Understanding of the underlying mechanisms that cause electrotaxis to occur is limited. The diversity of biological cells and environmental conditions make it likely that there are many different mechanisms that allow for cells to migrate due to electric fields. Some researchers have indicated that cells move passively without any specific sensing mechanisms applied to alter active motility.

Bacteria

In a sufficiently strong electric field, small cells may move as uniformly charged particles[16] or dipoles.[17] Other research reports suggest that bacteria cells might perceive local electric fields via chemotaxis.[18][19][20] This is done by sensing redox molecules that have formed a gradient relative to the poised electrical surface in the local environment.

Mammalian Cells

The method of detection of a field in mammalian cells is under active investigation and might involve several mechanisms. For now, it is thought that redistribution of membrane-bound sensors dragged by Coulombic forces and electro-osmosis at the membrane would cause the cell to polarize, then migrate.[21]

See also

References

  1. ^ Cortese, Barbara; Palamà, Ilaria; D'Amone, Stefania; Gigli, Giuseppe (2014). "Influence of electrotaxis on cell behaviour". Integrative Biology. 6 (9): 817–830. doi:10.1039/c4ib00142g. PMID 25058796.
  2. ^ Cortese, Barbara; Palamà, Ilaria Elena; D'Amone, Stefania; Gigli, Giuseppe (2014). "Influence of electrotaxis on cell behaviour". Integr. Biol. 6 (9): 817–830. doi:10.1039/c4ib00142g. ISSN 1757-9694. PMID 25058796.
  3. ^ a b Chong, Poehere; Erable, Benjamin; Bergel, Alain (1 December 2021). "How bacteria use electric fields to reach surfaces". Biofilm. 3: 100048. doi:10.1016/j.bioflm.2021.100048. ISSN 2590-2075. PMC 8090995. PMID 33997766.
  4. ^ Jaffe, Lionel; Vanable Jr., Joseph (1984). "Electric fields and wound healing". Clinics in Dermatology. 2 (3): 34–44. doi:10.1016/0738-081X(84)90025-7. PMID 6336255.
  5. ^ Nuccitelli, Richard (2003). "A role for endogenous electric fields in wound healing". Current Topics in Developmental Biology. 58 (2): 1–24. doi:10.1016/S0070-2153(03)58001-2. ISBN 9780121531584. PMID 14711011.
  6. ^ Carley, P. J.; Wainapel, S. F. (July 1985). "Electrotherapy for acceleration of wound healing: low intensity direct current". Archives of Physical Medicine and Rehabilitation. 66 (7): 443–446. ISSN 0003-9993. PMID 3893385.
  7. ^ Gault, W. R.; Gatens, P. F. (March 1976). "Use of low intensity direct current in management of ischemic skin ulcers". Physical Therapy. 56 (3): 265–269. doi:10.1093/ptj/56.3.265. ISSN 0031-9023. PMID 1083031.
  8. ^ Sven Olof Wikström, Paul Svedman, H (January 1999). "Effect of Transcutaneous Nerve Stimulation on Microcirculation in Intact Skin and Blister Wounds in Healthy Volunteers". Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery. 33 (2): 195–201. doi:10.1080/02844319950159451. ISSN 0284-4311. PMID 10450577.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Zhao, Min; Penninger, Josef; Isseroff, Roslyn Rivkah (2010). "Electrical Activation of Wound-Healing Pathways". In Sen, Chandan K. (ed.). Advances in Skin & Wound Care, Volume 1. Mary Ann Liebert, Inc. pp. 567–573. doi:10.1089/9781934854013.567 (inactive 31 July 2022). ISBN 978-1-934854-01-3. PMC 3198837. PMID 22025904.{{cite book}}: CS1 maint: DOI inactive as of July 2022 (link)
  10. ^ Yan, Xiaolong; Han, Jing; Zhang, Zhipei; Wang, Jian; Cheng, Qingshu; Gao, Kunxiang; Ni, Yunfeng; Wang, Yunjie (January 2009). "Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs". Bioelectromagnetics. 30 (1): 29–35. doi:10.1002/bem.20436. ISSN 1521-186X. PMID 18618607. S2CID 29927118.
  11. ^ McCaig, Colin D.; Rajnicek, Ann M.; Song, Bing; Zhao, Min (July 2005). "Controlling cell behavior electrically: current views and future potential". Physiological Reviews. 85 (3): 943–978. doi:10.1152/physrev.00020.2004. ISSN 0031-9333. PMID 15987799.
  12. ^ Berthelot, Ryan; Doxsee, Kristina; Neethirajan, Suresh (29 June 2017). "Electroceutical Approach for Impairing the Motility of Pathogenic Bacterium Using a Microfluidic Platform". Micromachines. 8 (7): 207. doi:10.3390/mi8070207. ISSN 2072-666X. PMC 6189992. PMID 30400398.
  13. ^ Verworn, Max (1889). "Die polare Erregung der Protisten durch den galvanischen Strom". Archiv für die gesamte Physiologie des Menschen und der Tiere. 45 (1): 1–36.
  14. ^ Dineur, E (1891). "Note sur la sensibilité des leucocytes à l'électricité". Bull. Séances Soc. Belge Microscopie. 18: 113–118.
  15. ^ McCaig, Colin; Rajnicek, Ann; Song, Bing; Zhao, Min (2005). "Controlling Cell Behavior Electrically: Current Views and Future Potential". Physiological Reviews. 85 (3): 943–978. doi:10.1152/physrev.00020.2004. PMID 15987799.
  16. ^ Adler, J.; Shi, W. (1988). "Galvanotaxis in bacteria". Cold Spring Harbor Symposia on Quantitative Biology. 53 Pt 1: 23–25. doi:10.1101/sqb.1988.053.01.006. ISSN 0091-7451. PMID 3076081.
  17. ^ Shi, W.; Stocker, B. A.; Adler, J. (February 1996). "Effect of the surface composition of motile Escherichia coli and motile Salmonella species on the direction of galvanotaxis". Journal of Bacteriology. 178 (4): 1113–1119. doi:10.1128/jb.178.4.1113-1119.1996. ISSN 0021-9193. PMC 177773. PMID 8576046.
  18. ^ Oram, Joseph; Jeuken, Lars J. C. (1 October 2017). "Shewanella oneidensis MR-1 electron acceptor taxis and the perception of electrodes poised at oxidative potentials". Current Opinion in Electrochemistry. 5 (1): 99–105. doi:10.1016/j.coelec.2017.07.013. ISSN 2451-9103.
  19. ^ Nealson, K. H.; Moser, D. P.; Saffarini, D. A. (April 1995). "Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens". Applied and Environmental Microbiology. 61 (4): 1551–1554. Bibcode:1995ApEnM..61.1551N. doi:10.1128/aem.61.4.1551-1554.1995. ISSN 0099-2240. PMC 167410. PMID 11536689.
  20. ^ Kim, Beum Jun; Chu, Injun; Jusuf, Sebastian; Kuo, Tiffany; TerAvest, Michaela A.; Angenent, Largus T.; Wu, Mingming (2016). "Oxygen Tension and Riboflavin Gradients Cooperatively Regulate the Migration of Shewanella oneidensis MR-1 Revealed by a Hydrogel-Based Microfluidic Device". Frontiers in Microbiology. 7: 1438. doi:10.3389/fmicb.2016.01438. ISSN 1664-302X. PMC 5028412. PMID 27703448.
  21. ^ Allen, G. M.; Mogilner, A.; Theriot, J. A. (April 2013). "Electrophoresis of Cellular Membrane Components Creates the Directional Cue Guiding Keratocyte Galvanotaxis". Current Biology. 23 (7): 560–568. doi:10.1016/j.cub.2013.02.047. PMC 3718648. PMID 23541731.

External links

The dictionary definition of electrotaxis at Wiktionary