Cononsolvency

From Justapedia, unleashing the power of collective wisdom
Jump to navigation Jump to search
Schematic representation of the cononsolvency effect of a polymer in mixed solution.

Cononsolvency is a phenomenon where two solvents that can typically readily dissolve a polymer, when mixed, at certain compositions of these two solvents, are no longer able to dissolve the polymer. This is in contrast to cosolvency where two solvents that are good at dissolving a material, when mixed, form a solution also capable of dissolving the material.

The first work about the cononsolvency effect was published in the late 1970s[1] and since then, numerous studies focused on a manifold of different polymers that featured the cononsolvency effect in water and various organic cosolvents such as methanol, ethanol, and acetone.[2][3][4] Typically poly(acrylamide)s such as poly(N-isopropylacrylamide) show the cononsolvency effect,[5][6][7] while this effect is also known for other homopolymers and for more complex systems e.g., diblock copolymer, polyelectrolytes,[8][9] crosslinked microgels,[10][11] micelles,[12] and grafted polymer brushes.[13][9] Recently, it was also shown that thermo-responsive thin films exhibit the cononsolvency effect in a mixed solvent vapor phase,[14][15][16][17] which can be explained by a decreased volume phase transition temperature, the thin-film analogy of a lower critical solution temperature. These experimental studies are supported by a growing number of simulation studies.[18][19][20][21]

After 40 years of research, the origin of the molecular mechanism behind the cononsolvency effect in a mixture of solvents is still not fully resolved yet. While most researchers consider polymer–solvent interactions as main influence on the cononsolvency effect, there are also other theories including competitive hydrogen bonding of the solvent and cosolvent with the polymer,[22][19][23][24] hydrophobic hydration of particular functional groups of the polymer,[25] cosolvent induced geometric frustration,[26][27] excluded-volume interactions due to the surfactant-like behavior of amphiphilic cosolvents,[28][29] and the three body effects, i.e., bridging of two individual polymer chains by the cosolvent.[13][22][30]

References

  1. ^ Wolf, B. A.; Willms, M. M. (September 1978). "Measured and calculated solubility of polymers in mixed solvents: Co-nonsolvency". Die Makromolekulare Chemie. 179 (9): 2265–2277. doi:10.1002/macp.1978.021790914. ISSN 0025-116X.
  2. ^ Winnik, Francoise M.; Ringsdorf, H.; Venzmer, J. (1990-04-01). "Methanol-water as a co-nonsolvent system for poly(N-isopropylacrylamide)". Macromolecules. 23 (8): 2415–2416. Bibcode:1990MaMol..23.2415W. doi:10.1021/ma00210a048. ISSN 0024-9297.
  3. ^ Crowther, H. M.; Vincent, B. (1998-01-23). "Swelling behavior of poly- N -isopropylacrylamide microgel particles in alcoholic solutions". Colloid & Polymer Science. 276 (1): 46–51. doi:10.1007/s003960050207. ISSN 0303-402X. S2CID 93950244.
  4. ^ Costa, Ricardo O. R; Freitas, Roberto F. S (2002-01-01). "Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solutions". Polymer. 43 (22): 5879–5885. doi:10.1016/S0032-3861(02)00507-4. ISSN 0032-3861.
  5. ^ Yamauchi, Hideo; Maeda, Yasushi (2007-11-01). "LCST and UCST Behavior of Poly(N-isopropylacrylamide) in DMSO/Water Mixed Solvents Studied by IR and Micro-Raman Spectroscopy". The Journal of Physical Chemistry B. 111 (45): 12964–12968. doi:10.1021/jp072438s. ISSN 1520-6106. PMID 17949072.
  6. ^ Zhu, Peng Wei; Napper, Donald H. (1996-06-21). "Volume phase transitions of poly(N-isopropylacrylamide) latex particles in mixed water-N,N-dimethylformamide solutions". Chemical Physics Letters. 256 (1): 51–56. Bibcode:1996CPL...256...51Z. doi:10.1016/0009-2614(96)00420-4. ISSN 0009-2614.
  7. ^ Dalkas, Georgios; Pagonis, Konstantinos; Bokias, Georgios (2006-01-03). "Control of the lower critical solution temperature—type cononsolvency properties of poly(N-isopropylacrylamide) in water—dioxane mixtures through copolymerisation with acrylamide". Polymer. 47 (1): 243–248. doi:10.1016/j.polymer.2005.10.115. ISSN 0032-3861.
  8. ^ Chen, Zhiyun; Yu, Sihan; Liu, Doudou; Shi, Shaoxiong; Shen, Weiguo (2018-09-01). "Solvation Behaviors of Poly(acrylic acid) in Mixed Solvents of 2-Butoxyethanol + Water". Journal of Solution Chemistry. 47 (9): 1539–1552. doi:10.1007/s10953-018-0809-x. ISSN 1572-8927. S2CID 106294052.
  9. ^ a b Edmondson, Steve; Nguyen, Nam T.; Lewis, Andrew L.; Armes, Steven P. (2010-05-18). "Co-Nonsolvency Effects for Surface-Initiated Poly(2-(methacryloyloxy)ethyl phosphorylcholine) Brushes in Alcohol/Water Mixtures". Langmuir. 26 (10): 7216–7226. doi:10.1021/la904346j. ISSN 0743-7463. PMID 20380474.
  10. ^ Kojima, Hiroyuki; Tanaka, Fumihiko; Scherzinger, Christine; Richtering, Walter (2012-10-19). "Temperature dependent phase behavior of PNIPAM microgels in mixed water/methanol solvents". Journal of Polymer Science Part B: Polymer Physics. 51 (14): 1100–1111. doi:10.1002/polb.23194. ISSN 0887-6266.
  11. ^ Maccarrone, Simona; Scherzinger, Christine; Holderer, Olaf; Lindner, Peter; Sharp, Melissa; Richtering, Walter; Richter, Dieter (2014-09-09). "Cononsolvency Effects on the Structure and Dynamics of Microgels". Macromolecules. 47 (17): 5982–5988. Bibcode:2014MaMol..47.5982M. doi:10.1021/ma500954t. ISSN 0024-9297.
  12. ^ Kyriakos, Konstantinos; Philipp, Martine; Adelsberger, Joseph; Jaksch, Sebastian; Berezkin, Anatoly V.; Lugo, Dersy M.; Richtering, Walter; Grillo, Isabelle; Miasnikova, Anna; Laschewsky, André; Müller-Buschbaum, Peter (2014-10-14). "Cononsolvency of Water/Methanol Mixtures for PNIPAM and PS-b-PNIPAM: Pathway of Aggregate Formation Investigated Using Time-Resolved SANS". Macromolecules. 47 (19): 6867–6879. Bibcode:2014MaMol..47.6867K. doi:10.1021/ma501434e. ISSN 0024-9297.
  13. ^ a b Sommer, Jens-Uwe (2017-03-14). "Adsorption–Attraction Model for Co-Nonsolvency in Polymer Brushes". Macromolecules. 50 (5): 2219–2228. Bibcode:2017MaMol..50.2219S. doi:10.1021/acs.macromol.6b02231. ISSN 0024-9297.
  14. ^ Kreuzer, Lucas P.; Lindenmeir, Christoph; Geiger, Christina; Widmann, Tobias; Hildebrand, Viet; Laschewsky, André; Papadakis, Christine M.; Müller-Buschbaum, Peter (2021-02-09). "Poly(sulfobetaine) versus Poly(N-isopropylmethacrylamide): Co-Nonsolvency-Type Behavior of Thin Films in a Water/Methanol Atmosphere". Macromolecules. 54 (3): 1548–1556. Bibcode:2021MaMol..54.1548K. doi:10.1021/acs.macromol.0c02281. ISSN 0024-9297. S2CID 234184714.
  15. ^ Kreuzer, Lucas P.; Geiger, Christina; Widmann, Tobias; Wang, Peixi; Cubitt, Robert; Hildebrand, Viet; Laschewsky, André; Papadakis, Christine M.; Müller-Buschbaum, Peter (2021-08-10). "Solvation Behavior of Poly(sulfobetaine)-Based Diblock Copolymer Thin Films in Mixed Water/Methanol Vapors". Macromolecules. 54 (15): 7147–7159. Bibcode:2021MaMol..54.7147K. doi:10.1021/acs.macromol.1c01179. ISSN 0024-9297. S2CID 237724968.
  16. ^ Geiger, Christina; Reitenbach, Julija; Kreuzer, Lucas P.; Widmann, Tobias; Wang, Peixi; Cubitt, Robert; Henschel, Cristiane; Laschewsky, André; Papadakis, Christine M.; Müller-Buschbaum, Peter (2021-04-13). "PMMA-b-PNIPAM Thin Films Display Cononsolvency-Driven Response in Mixed Water/Methanol Vapors". Macromolecules. 54 (7): 3517–3530. Bibcode:2021MaMol..54.3517G. doi:10.1021/acs.macromol.1c00021. ISSN 0024-9297. S2CID 233517872.
  17. ^ Geiger, Christina; Reitenbach, Julija; Henschel, Cristiane; Kreuzer, Lucas P.; Widmann, Tobias; Wang, Peixi; Mangiapia, Gaetano; Moulin, Jean-François; Papadakis, Christine M.; Laschewsky, André; Müller-Buschbaum, Peter (November 2021). "Ternary Nanoswitches Realized with Multiresponsive PMMA‐ b ‐PNIPMAM Films in Mixed Water/Acetone Vapor Atmospheres". Advanced Engineering Materials. 23 (11): 2100191. doi:10.1002/adem.202100191. ISSN 1438-1656. S2CID 235560292.
  18. ^ Walter, Jonathan; Sehrt, Jan; Vrabec, Jadran; Hasse, Hans (2012-05-03). "Molecular Dynamics and Experimental Study of Conformation Change of Poly(N-isopropylacrylamide) Hydrogels in Mixtures of Water and Methanol". The Journal of Physical Chemistry B. 116 (17): 5251–5259. doi:10.1021/jp212357n. ISSN 1520-6106. PMID 22432852.
  19. ^ a b Heyda, Jan; Muzdalo, Anja; Dzubiella, Joachim (2013-02-12). "Rationalizing Polymer Swelling and Collapse under Attractive Cosolvent Conditions". Macromolecules. 46 (3): 1231–1238. Bibcode:2013MaMol..46.1231H. doi:10.1021/ma302320y. ISSN 0024-9297.
  20. ^ Rodríguez-Ropero, Francisco; Hajari, Timir; van der Vegt, Nico F. A. (2015-12-24). "Mechanism of Polymer Collapse in Miscible Good Solvents". The Journal of Physical Chemistry B. 119 (51): 15780–15788. doi:10.1021/acs.jpcb.5b10684. ISSN 1520-6106. PMID 26619003.
  21. ^ Tucker, Ashley K.; Stevens, Mark J. (2012-08-28). "Study of the Polymer Length Dependence of the Single Chain Transition Temperature in Syndiotactic Poly(N-isopropylacrylamide) Oligomers in Water". Macromolecules. 45 (16): 6697–6703. Bibcode:2012MaMol..45.6697T. doi:10.1021/ma300729z. ISSN 0024-9297.
  22. ^ a b Mukherji, Debashish; Marques, Carlos M.; Kremer, Kurt (2014-09-12). "Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption". Nature Communications. 5 (1): 4882. Bibcode:2014NatCo...5.4882M. doi:10.1038/ncomms5882. ISSN 2041-1723. PMC 4175582. PMID 25216245.
  23. ^ Tanaka, Fumihiko; Koga, Tsuyoshi; Kojima, Hiroyuki; Xue, Na; Winnik, Françoise M. (2011-04-26). "Preferential Adsorption and Co-nonsolvency of Thermoresponsive Polymers in Mixed Solvents of Water/Methanol". Macromolecules. 44 (8): 2978–2989. Bibcode:2011MaMol..44.2978T. doi:10.1021/ma102695n. ISSN 0024-9297.
  24. ^ Backes, Sebastian; Krause, Patrick; Tabaka, Weronika; Witt, Marcus U.; Mukherji, Debashish; Kremer, Kurt; von Klitzing, Regine (2017-10-17). "Poly(N-isopropylacrylamide) Microgels under Alcoholic Intoxication: When a LCST Polymer Shows Swelling with Increasing Temperature". ACS Macro Letters. 6 (10): 1042–1046. doi:10.1021/acsmacrolett.7b00557.
  25. ^ Bischofberger, I.; Calzolari, D. C. E.; Trappe, V. (2014-10-01). "Co-nonsolvency of PNiPAM at the transition between solvation mechanisms". Soft Matter. 10 (41): 8288–8295. arXiv:1410.7487. Bibcode:2014SMat...10.8288B. doi:10.1039/C4SM01345J. ISSN 1744-6848. PMID 25192016. S2CID 2237894.
  26. ^ Dalgicdir, Cahit; Rodríguez-Ropero, Francisco; van der Vegt, Nico F. A. (2017-08-17). "Computational Calorimetry of PNIPAM Cononsolvency in Water/Methanol Mixtures". The Journal of Physical Chemistry B. 121 (32): 7741–7748. doi:10.1021/acs.jpcb.7b05960. ISSN 1520-6106.
  27. ^ Tavagnacco, Letizia; Zaccarelli, Emanuela; Chiessi, Ester (2020-01-01). "Molecular description of the coil-to-globule transition of Poly(N-isopropylacrylamide) in water/ethanol mixture at low alcohol concentration". Journal of Molecular Liquids. 297: 111928. doi:10.1016/j.molliq.2019.111928. ISSN 0167-7322.
  28. ^ Bharadwaj, Swaminath; Nayar, Divya; Dalgicdir, Cahit; van der Vegt, Nico F. A. (2020-11-11). "A cosolvent surfactant mechanism affects polymer collapse in miscible good solvents". Communications Chemistry. 3 (1): 1–7. doi:10.1038/s42004-020-00405-x. ISSN 2399-3669.
  29. ^ Bharadwaj, Swaminath; Nayar, Divya; Dalgicdir, Cahit; van der Vegt, Nico F. A. (2021-04-07). "An interplay of excluded-volume and polymer–(co)solvent attractive interactions regulates polymer collapse in mixed solvents". The Journal of Chemical Physics. 154 (13): 134903. doi:10.1063/5.0046746. ISSN 0021-9606.
  30. ^ Zhu, Peng-wei; Chen, Luguang (2019-02-11). "Effects of cosolvent partitioning on conformational transitions and chain flexibility of thermoresponsive microgels". Physical Review E. 99 (2): 022501. Bibcode:2019PhRvE..99b2501Z. doi:10.1103/PhysRevE.99.022501. PMID 30934277. S2CID 91187258.