Cellular approximation theorem

From Justapedia, unleashing the power of collective wisdom
Jump to navigation Jump to search

In algebraic topology, the cellular approximation theorem states that a map between CW-complexes can always be taken to be of a specific type. Concretely, if X and Y are CW-complexes, and f : XY is a continuous map, then f is said to be cellular, if f takes the n-skeleton of X to the n-skeleton of Y for all n, i.e. if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(X^n)\subseteq Y^n} for all n. The content of the cellular approximation theorem is then that any continuous map f : XY between CW-complexes X and Y is homotopic to a cellular map, and if f is already cellular on a subcomplex A of X, then we can furthermore choose the homotopy to be stationary on A. From an algebraic topological viewpoint, any map between CW-complexes can thus be taken to be cellular.

Idea of proof

The proof can be given by induction after n, with the statement that f is cellular on the skeleton Xn. For the base case n=0, notice that every path-component of Y must contain a 0-cell. The image under f of a 0-cell of X can thus be connected to a 0-cell of Y by a path, but this gives a homotopy from f to a map which is cellular on the 0-skeleton of X.

Assume inductively that f is cellular on the (n − 1)-skeleton of X, and let en be an n-cell of X. The closure of en is compact in X, being the image of the characteristic map of the cell, and hence the image of the closure of en under f is also compact in Y. Then it is a general result of CW-complexes that any compact subspace of a CW-complex meets (that is, intersects non-trivially) only finitely many cells of the complex. Thus f(en) meets at most finitely many cells of Y, so we can take Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^k\subseteq Y} to be a cell of highest dimension meeting f(en). If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\leq n} , the map f is already cellular on en, since in this case only cells of the n-skeleton of Y meets f(en), so we may assume that k > n. It is then a technical, non-trivial result (see Hatcher) that the restriction of f to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^{n-1}\cup e^n} can be homotoped relative to Xn-1 to a map missing a point p ∈ ek. Since Yk − {p} deformation retracts onto the subspace Yk-ek, we can further homotope the restriction of f to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^{n-1}\cup e^n} to a map, say, g, with the property that g(en) misses the cell ek of Y, still relative to Xn-1. Since f(en) met only finitely many cells of Y to begin with, we can repeat this process finitely many times to make Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(e^n)} miss all cells of Y of dimension larger than n.

We repeat this process for every n-cell of X, fixing cells of the subcomplex A on which f is already cellular, and we thus obtain a homotopy (relative to the (n − 1)-skeleton of X and the n-cells of A) of the restriction of f to Xn to a map cellular on all cells of X of dimension at most n. Using then the homotopy extension property to extend this to a homotopy on all of X, and patching these homotopies together, will finish the proof. For details, consult Hatcher.

Applications

Some homotopy groups

The cellular approximation theorem can be used to immediately calculate some homotopy groups. In particular, if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n<k,} then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_n(S^k)=0.} Give Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^n} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^k} their canonical CW-structure, with one 0-cell each, and with one n-cell for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^n} and one k-cell for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^k.} Any base-point preserving map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\colon S^n \to S^k} is then homotopic to a map whose image lies in the n-skeleton of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^k,} which consists of the base point only. That is, any such map is nullhomotopic.

Cellular approximation for pairs

Let f:(X,A)(Y,B) be a map of CW-pairs, that is, f is a map from X to Y, and the image of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\subseteq X \,} under f sits inside B. Then f is homotopic to a cellular map (X,A)(Y,B). To see this, restrict f to A and use cellular approximation to obtain a homotopy of f to a cellular map on A. Use the homotopy extension property to extend this homotopy to all of X, and apply cellular approximation again to obtain a map cellular on X, but without violating the cellular property on A.

As a consequence, we have that a CW-pair (X,A) is n-connected, if all cells of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X-A} have dimension strictly greater than n: If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\leq n \,} , then any map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (D^i,\partial D^i) \,}(X,A) is homotopic to a cellular map of pairs, and since the n-skeleton of X sits inside A, any such map is homotopic to a map whose image is in A, and hence it is 0 in the relative homotopy group Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_i(X,A) \,} .
We have in particular that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X,X^n)\,} is n-connected, so it follows from the long exact sequence of homotopy groups for the pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X,X^n) \,} that we have isomorphisms Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_i(X^n) \,}Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_i(X) \,} for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i<n \,} and a surjection Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_n(X^n) \,}Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_n(X) \,} .

CW approximation

For every space X one can construct a CW complex Z and a weak homotopy equivalence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \colon Z\to X} that is called a CW approximation to X. CW approximation, being a weak homotopy equivalence, induces isomorphisms on homology and cohomology groups of X. Thus one often can use CW approximation to reduce a general statement to a simpler version that only concerns CW complexes.

CW approximation is constructed inducting on skeleta Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_i} of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z} , so that the maps Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f_i)_*\colon \pi_k (Z_i)\to \pi_k(X) } are isomorphic for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k< i} and are onto for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=i} (for any basepoint). Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{i+1}} is built from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_i} by attaching (i+1)-cells that (for all basepoints)

  • are attached by the mappings Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^i \to Z_i} that generate the kernel of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_i (Z_i)\to \pi_i(X) } (and are mapped to X by the contraction of the corresponding spheroids)
  • are attached by constant mappings and are mapped to X to generate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_{i+1}(X) } (or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_{i+1}(X)/(f_i)_* (\pi_{i+1} (Z_i)) } ).

The cellular approximation ensures then that adding (i+1)-cells doesn't affect Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_k (Z_i)\stackrel{\cong}{\to} \pi_k (X)} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k<i } , while Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_i (Z_i) } gets factored by the classes of the attachment mappings Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^i \to Z_i} of these cells giving Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_i (Z_{i+1})\stackrel{\cong}{\to} \pi_i (X)} . Surjectivity of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_{i+1} (Z_{i+1})\to \pi_{i+1} (X)} is evident from the second step of the construction.

References

  • Hatcher, Allen (2005), Algebraic topology, Cambridge University Press, ISBN 978-0-521-79540-1