Cantellated 5-cubes

From Justapedia, unleashing the power of collective wisdom
(Redirected from Bicantellated 5-cube)
Jump to navigation Jump to search
5-cube t0.svg
5-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t02.svg
Cantellated 5-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t13.svg
Bicantellated 5-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
5-cube t24.svg
Cantellated 5-orthoplex
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-cube t4.svg
5-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-cube t012.svg
Cantitruncated 5-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t123.svg
Bicantitruncated 5-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
5-cube t234.svg
Cantitruncated 5-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Orthogonal projections in B5 Coxeter plane

In six-dimensional geometry, a cantellated 5-cube is a convex uniform 5-polytope, being a cantellation of the regular 5-cube.

There are 6 unique cantellation for the 5-cube, including truncations. Half of them are more easily constructed from the dual 5-orthoplex

Cantellated 5-cube

Cantellated 5-cube
Type Uniform 5-polytope
Schläfli symbol rr{4,3,3,3} =
Coxeter-Dynkin diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node.pngCDel split1-43.pngCDel nodes 11.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png
4-faces 122
Cells 680
Faces 1520
Edges 1280
Vertices 320
Vertex figure Cantellated 5-cube vertf.png
Coxeter group B5 [4,3,3,3]
Properties convex

Alternate names

  • Small rhombated penteract (Acronym: sirn) (Jonathan Bowers)

Coordinates

The Cartesian coordinates of the vertices of a cantellated 5-cube having edge length 2 are all permutations of:

Images

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t02.svg 5-cube t02 B4.svg 5-cube t02 B3.svg
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 5-cube t02 B2.svg 5-cube t02 A3.svg
Dihedral symmetry [4] [4]

Bicantellated 5-cube

Bicantellated 5-cube
Type Uniform 5-polytope
Schläfli symbols 2rr{4,3,3,3} =
r{32,1,1} =
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 4a3b.pngCDel nodes.png
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
4-faces 122
Cells 840
Faces 2160
Edges 1920
Vertices 480
Vertex figure Bicantellated penteract verf.png
Coxeter group B5 [4,3,3,3]
Properties convex

In five-dimensional geometry, a bicantellated 5-cube is a uniform 5-polytope.

Alternate names

  • Bicantellated penteract, bicantellated 5-orthoplex, or bicantellated pentacross
  • Small birhombated penteractitriacontiditeron (Acronym: sibrant) (Jonathan Bowers)

Coordinates

The Cartesian coordinates of the vertices of a bicantellated 5-cube having edge length 2 are all permutations of:

(0,1,1,2,2)

Images

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t13.svg 5-cube t13 B4.svg 5-cube t13 B3.svg
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 5-cube t13 B2.svg 5-cube t13 A3.svg
Dihedral symmetry [4] [4]

Cantitruncated 5-cube

Cantitruncated 5-cube
Type Uniform 5-polytope
Schläfli symbol tr{4,3,3,3} =
Coxeter-Dynkin
diagram
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel split1-43.pngCDel nodes 11.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png
4-faces 122
Cells 680
Faces 1520
Edges 1600
Vertices 640
Vertex figure Canitruncated 5-cube verf.png
Irr. 5-cell
Coxeter group B5 [4,3,3,3]
Properties convex, isogonal

Alternate names

  • Tricantitruncated 5-orthoplex / tricantitruncated pentacross
  • Great rhombated penteract (girn) (Jonathan Bowers)

Coordinates

The Cartesian coordinates of the vertices of an cantitruncated 5-cube having an edge length of 2 are given by all permutations of coordinates and sign of:

Images

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t012.svg 5-cube t012 B4.svg 5-cube t012 B3.svg
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 5-cube t012 B2.svg 5-cube t012 A3.svg
Dihedral symmetry [4] [4]

Bicantitruncated 5-cube

Bicantitruncated 5-cube
Type uniform 5-polytope
Schläfli symbol 2tr{3,3,3,4} =
t{32,1,1} =
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 4a3b.pngCDel nodes.png
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
4-faces 122
Cells 840
Faces 2160
Edges 2400
Vertices 960
Vertex figure Bicanitruncated 5-cube verf.png
Coxeter groups B5, [3,3,3,4]
D5, [32,1,1]
Properties convex

Alternate names

  • Bicantitruncated penteract
  • Bicantitruncated pentacross
  • Great birhombated penteractitriacontiditeron (Acronym: gibrant) (Jonathan Bowers)

Coordinates

Cartesian coordinates for the vertices of a bicantitruncated 5-cube, centered at the origin, are all sign and coordinate permutations of

(±3,±3,±2,±1,0)

Images

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t123.svg 5-cube t123 B4.svg 5-cube t123 B3.svg
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 5-cube t123 B2.svg 5-cube t123 A3.svg
Dihedral symmetry [4] [4]

Related polytopes

These polytopes are from a set of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex.

B5 polytopes
5-cube t4.svg
β5
5-cube t3.svg
t1β5
5-cube t2.svg
t2γ5
5-cube t1.svg
t1γ5
5-cube t0.svg
γ5
5-cube t34.svg
t0,1β5
5-cube t24.svg
t0,2β5
5-cube t23.svg
t1,2β5
5-cube t14.svg
t0,3β5
5-cube t13.svg
t1,3γ5
5-cube t12.svg
t1,2γ5
5-cube t04.svg
t0,4γ5
5-cube t03.svg
t0,3γ5
5-cube t02.svg
t0,2γ5
5-cube t01.svg
t0,1γ5
5-cube t234.svg
t0,1,2β5
5-cube t134.svg
t0,1,3β5
5-cube t124.svg
t0,2,3β5
5-cube t123.svg
t1,2,3γ5
5-cube t034.svg
t0,1,4β5
5-cube t024.svg
t0,2,4γ5
5-cube t023.svg
t0,2,3γ5
5-cube t014.svg
t0,1,4γ5
5-cube t013.svg
t0,1,3γ5
5-cube t012.svg
t0,1,2γ5
5-cube t1234.svg
t0,1,2,3β5
5-cube t0234.svg
t0,1,2,4β5
5-cube t0134.svg
t0,1,3,4γ5
5-cube t0124.svg
t0,1,2,4γ5
5-cube t0123.svg
t0,1,2,3γ5
5-cube t01234.svg
t0,1,2,3,4γ5

It is third in a series of cantitruncated hypercubes:

Petrie polygon projections
3-cube t012.svg4-cube t012 B2.svg 4-cube t012.svg4-cube t012 A3.svg 5-cube t012.svg5-cube t012 A3.svg 6-cube t012.svg6-cube t012 A5.svg 7-cube t012.svg7-cube t012 A5.svg 8-cube t012.svg8-cube t012 A7.svg
Truncated cuboctahedron Cantitruncated tesseract Cantitruncated 5-cube Cantitruncated 6-cube Cantitruncated 7-cube Cantitruncated 8-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "5D uniform polytopes (polytera)". o3o3x3o4x - sirn, o3x3o3x4o - sibrant, o3o3x3x4x - girn, o3x3x3x4o - gibrant

External links

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds