von Mises–Fisher distribution

From Justapedia, unleashing the power of collective wisdom
Jump to navigation Jump to search

In directional statistics, the von Mises–Fisher distribution (named after Richard von Mises and Ronald Fisher), is a probability distribution on the -sphere in . If the distribution reduces to the von Mises distribution on the circle.

Definition

The probability density function of the von Mises–Fisher distribution for the random p-dimensional unit vector is given by:

where and the normalization constant is equal to

where denotes the modified Bessel function of the first kind at order . If , the normalization constant reduces to

The parameters and are called the mean direction and concentration parameter, respectively. The greater the value of , the higher the concentration of the distribution around the mean direction . The distribution is unimodal for , and is uniform on the sphere for .

The von Mises–Fisher distribution for is also called the Fisher distribution.[1][2] It was first used to model the interaction of electric dipoles in an electric field.[3] Other applications are found in geology, bioinformatics, and text mining.

Note on the normalization constant

In the textbook by Mardia and Jupp,[3] the normalization constant given for the Von Mises Fisher probability density is apparently different from the one given here: . In that book, the normalization constant is specified as:

This is resolved by noting that Mardia and Jupp give the density "with respect to the uniform distribution", while the density here is specified in the usual way, with respect to Lebesgue measure. The density (w.r.t. Lebesgue measure) of the uniform distribution is the reciprocal of the surface area of the (p-1)-sphere, so that the uniform density function is given by the constant:

It then follows that:

While the value for was derived above via the surface area, the same result may be obtained by setting in the above formula for . This can be done by noting that the series expansion for divided by has but one non-zero term at . (To evaluate that term, one needs to use the definition .)

Relation to normal distribution

Starting from a normal distribution with isotropic covariance and mean of length , whose density function is:

the Von Mises–Fisher distribution is obtained by conditioning on . By expanding

and using the fact that the first two right-hand-side terms are fixed, the Von Mises-Fisher density, is recovered by recomputing the normalization constant by integrating over the unit sphere. If , we get the uniform distribution, with density .

More succinctly, the restriction of any isotropic multivariate normal density to the unit hypersphere, gives a Von Mises-Fisher density, up to normalization.

This construction can be generalized by starting with a normal distribution with a general covariance matrix, in which case conditioning on gives the Fisher-Bingham distribution.

Estimation of parameters

Mean direction

A series of N independent unit vectors are drawn from a von Mises–Fisher distribution. The maximum likelihood estimates of the mean direction is simply the normalized arithmetic mean, a sufficient statistic:[3]

Concentration parameter

Use the Bessel function of the first kind to define

Then:

Thus is the solution to

A simple approximation to is (Sra, 2011)

A more accurate inversion can be obtained by iterating the Newton method a few times

Standard error

For N ≥ 25, the estimated spherical standard error of the sample mean direction can be computed as:[4]

where

It is then possible to approximate a a spherical confidence interval (a confidence cone) about with semi-vertical angle:

where

For example, for a 95% confidence cone, and thus

Expected value

The expected value of the Von Mises–Fisher distribution is not on the unit hypersphere, but instead has a length of less than one. This length is given by as defined above. For a Von Mises–Fisher distribution with mean direction and concentration , the expected value is:

.

For , the expected value is at the origin. For finite , the length of the expected value, is strictly between zero and one and is a monotonic rising function of .

The empirical mean (arithmetic average) of a collection of points on the unit hypersphere behaves in a similar manner, being close to the origin for widely spread data and close to the sphere for concentrated data. Indeed, for the Von Mises–Fisher distribution, the expected value of the maximum-likelihood estimate based on a collection of points is equal to the empirical mean of those points.

Entropy and KL divergence

The expected value can be used to compute differential entropy and KL divergence.

The differential entropy of is:

.

Notice that the entropy is a function of only.

The KL divergence between and is:


Transformation

Von Mises-Fisher (VMF) distributions are closed under orthogonal linear transforms. Let be a -by- orthogonal matrix. Let and apply the invertible linear transform: . The inverse transform is , because the inverse of an orthogonal matrix is its transpose: . The Jacobian of the transform is , for which the absolute value of its determinant is 1, also because of the orthogonality. Using these facts and the form of the VMF density, it follows that:

One may verify that since and are unit vectors, then by the orthogonality, so are and .

Generalizations

The matrix von Mises-Fisher distribution (also known as matrix Langevin distribution[5][6]) has the density

supported on the Stiefel manifold of orthonormal p-frames , where is an arbitrary real matrix.[7][8]

Distribution of polar angle

For , the angle θ between and satisfies . It has the distribution

,

which can be easily evaluated as

.

See also

References

  1. ^ Fisher, R. A. (1953). "Dispersion on a sphere". Proc. R. Soc. Lond. A. 217 (1130): 295–305. Bibcode:1953RSPSA.217..295F. doi:10.1098/rspa.1953.0064. S2CID 123166853.
  2. ^ Watson, G. S. (1980). "Distributions on the Circle and on the Sphere". J. Appl. Probab. 19: 265–280. doi:10.2307/3213566. JSTOR 3213566.
  3. ^ a b c Mardia, Kanti; Jupp, P. E. (1999). Directional Statistics. John Wiley & Sons Ltd. ISBN 978-0-471-95333-3.
  4. ^ Embleton, N. I. Fisher, T. Lewis, B. J. J. (1993). Statistical analysis of spherical data (1st pbk. ed.). Cambridge: Cambridge University Press. pp. 115–116. ISBN 0-521-45699-1.
  5. ^ Pal, Subhadip; Sengupta, Subhajit; Mitra, Riten; Banerjee, Arunava (2020). "Conjugate Priors and Posterior Inference for the Matrix Langevin Distribution on the Stiefel Manifold". Bayesian Analysis. 15 (3): 871–908. doi:10.1214/19-BA1176. ISSN 1936-0975. Retrieved 10 July 2021.
  6. ^ Chikuse, Yasuko (1 May 2003). "Concentrated matrix Langevin distributions". Journal of Multivariate Analysis. 85 (2): 375–394. doi:10.1016/S0047-259X(02)00065-9. ISSN 0047-259X.
  7. ^ Jupp (1979). "Maximum likelihood estimators for the matrix von Mises-Fisher and Bingham distributions". The Annals of Statistics. 7 (3): 599–606. doi:10.1214/aos/1176344681.
  8. ^ Downs (1972). "Orientational statistics". Biometrika. 59 (3): 665–676. doi:10.1093/biomet/59.3.665.

Further reading

  • Dhillon, I., Sra, S. (2003) "Modeling Data using Directional Distributions". Tech. rep., University of Texas, Austin.
  • Banerjee, A., Dhillon, I. S., Ghosh, J., & Sra, S. (2005). "Clustering on the unit hypersphere using von Mises-Fisher distributions". Journal of Machine Learning Research, 6(Sep), 1345-1382.
  • Sra, S. (2011). "A short note on parameter approximation for von Mises-Fisher distributions: And a fast implementation of I_s(x)". Computational Statistics. 27: 177–190. CiteSeerX 10.1.1.186.1887. doi:10.1007/s00180-011-0232-x. S2CID 3654195.