List of largest known stars

From Justapedia, unleashing the power of collective wisdom
(Redirected from Largest stars)
Jump to navigation Jump to search

Below are lists of the largest stars currently known, ordered by radius and separated into categories by galaxy. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,300 mi).[1]

The angular diameters of stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few useful supergiant stars can be occulted by the Moon, including Antares A (Alpha Scorpii A). Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed.

Uncertainties remain with the membership and order of the lists, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or be within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods.

All the sizes stated in these lists have inaccuracies and may be disputed. The lists are still a work in progress and parameters are prone to change.

Caveats

Various issues exist in determining accurate radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:

  • Stellar radii or diameters are usually derived only approximately using Stefan–Boltzmann law for the deduced stellar luminosity and effective surface temperature.
  • Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
  • Many supergiant stars have extended atmospheres, and many are within opaque dust shells, making their true effective temperatures and surfaces highly uncertain.[citation needed]
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
  • Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.
  • Most distance estimates for red supergiants come from stellar cluster or association membership, because it is difficult to calculate accurate distances for red supergiants that are not part of any cluster or association.
  • In these lists are some examples of extremely distant extragalactic stars, which may have slightly different properties and natures than the currently largest known stars in the Milky Way. For example, some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or changing their spectral types over just a few months (or potentially years).[2][3]

Lists

The following lists show the largest known stars based on the host galaxy.

Milky Way

List of the largest known stars in the Milky Way
Star name Solar radii
(Sun = 1)
Method[a] Notes
Stephenson 2-18 2,150[4] L/Teff Located in close proximity to the extremely massive open cluster Stephenson 2 (RSGC2), where 25 other red supergiants are also located. Membership in the cluster currently uncertain, with large uncertainties in the measurements.
Orbit of Saturn 2,0472,049.9[5][b] Reported for reference
UY Scuti 1,708±192[6] AD The radius of UY Sct is more extreme than what current stellar evolution models predict. One paper mentions this extremity, and the reason for it is not yet clear.[7]
RSGC1-F01 1,530[8] L/Teff
The above radii are larger than what stellar evolution theory predicts, and are thus potentially unreliable
Theoretical limit of star size (Milky Way) ~1,500[9] This value comes from the rough average radii of the three largest stars studied in the paper. It is consistent with the largest possible stellar radii predicted from the current evolutionary theory, and it is believed that stars above this radius would be too unstable and simply do not form.[9]
Reported for reference
RSGC1-F04 1,422[8] L/Teff
VY Canis Majoris 1,420±120[10] AD
KY Cygni 1,420±284–(2,850±570)[9] L/Teff
CM Velorum 1,416.2385+0.3981
−0.9623
[11]
L/Teff
AH Scorpii 1,411±124[6] AD
RSGC1-F06 1,382[8] L/Teff
CD-26 5055 1,279.8291+20.4064
−122.9196
[11]
L/Teff
AS Cephei 1,262.5137+18.8257
−8.6085
[11]
L/Teff
RSGC1-F10 1,246[8] L/Teff
Westerlund 1 W237 (Westerlund 1 BKS B) 1,241±70[12] L/Teff
IRC -10414 ~1,200[13] L/Teff
V517 Monocerotis 1,196.2521+79.7298
−158.8974
[11]
L/Teff
PZ Cassiopeiae 1,190±238(–1,940±388)[9] L/Teff
BC Cygni 1,186.6136+33.6601
−37.1276
[11]
L/Teff A more detailed but older study gives values of 1,081 R (8561,375) for the year 2000, and 1,303 R (1,0211,553) for the year 1900.[14]
RSGC1-F05 1,185[8] L/Teff
NML Cygni 1,183[15] L/Teff
GCIRS 7 1,170±60[16]1,368[17] AD
Westerlund 1 W26 (Westerlund 1 BKS AS) 1,165±581,221±120[12] L/Teff
RSGC1-F08 1,150[8] L/Teff
RSGC1-F02 1,128[8] L/Teff
Orbit of Jupiter 1,114.51,115.8[5][b] Reported for reference
V766 Centauri Aa 1,110±50[18] ? V766 Centauri Aa is a rare variable yellow supergiant.
RT Carinae 1,090±218[9] L/Teff
UU Persei 1,078.8212+8.5103
−8.2887
[11]
L/Teff
V396 Centauri 1,070±214[9]1,145.31[19] L/Teff & ?
HD 126577 1,065.5137+8.6624
−31.799
[11]
L/Teff
W Persei 1,052.6853+76.7502
−85.3499
[11]
L/Teff
V602 Carinae 1,050±165[20] AD
RSGC1-F11 1,035[8] L/Teff
RSGC1-F13 1,017[8] L/Teff
CK Carinae 1,013.421,060±212[9] L/Teff
KW Sagittarii 1,009±142[6] AD
RSGC1-F07 1,006[8] L/Teff
V349 Carinae 1,001.6769+12.0794
−73.6583
[11]
L/Teff
RSGC1-F09 996[8] L/Teff
RSGC1-F12 955[8] L/Teff
RSGC1-F03 942[8] L/Teff
AZ Cygni 911+57
−50
[21]
AD
NSV 25875 891[15] L/Teff
V437 Scuti 874[15] L/Teff
LL Pegasi 869[15] L/Teff
V669 Cassiopeiae 859[15] L/Teff
Westerlund 1 W20 (Westerlund 1 BKS D) 858±48[12] L/Teff
VX Sagittarii 853[15]-1,335±215[22] L/Teff
BI Cygni 851.14[23]1,240±248[9] L/Teff
μ Cephei (Herschel's Garnet Star) 830[15]-972±228[24] AD
V1185 Scorpii 830[15] L/Teff
CW Leonis 826[15] L/Teff
LP Andromedae 815[15] L/Teff
U Arietis 801±205[25] AD
RT Ophiuchi 801±217[26] AD
BO Carinae 790±158[9] L/Teff
S Persei 780±156(–1,230±246)[9] L/Teff
SU Persei 780±156[9] – 971.405[19] L/Teff
RS Persei 770±30[27] AD
V355 Cephei 770±154[9] L/Teff
GU Cephei A 766.486[19] ?
Betelgeuse (α Orionis) 764+116
−62
[28]
? Tenth brightest star in the night sky.[29]
HD 303250 750±150[9] L/Teff
UU Pegasi 742±193[26] AD
Westerlund 1 W75 (Westerlund 1 BKS E) 722±36[12] L/Teff
V Camelopardalis 716±185[26] AD
V923 Centauri 715.539[19] ?
V528 Carinae 700±140[9] L/Teff
The following well-known stars are listed for the purpose of comparison.
V354 Cephei 685[30] L/Teff
Antares A (α Scorpii) 680[31] AD Fourteenth brightest star in the night sky.[29]
Mira A (ο Ceti) 541[15] L/Teff
Unurgunite (σ Canis Majoris) 420±84[9] L/Teff
Orbit of Mars 322323.1[5][b] Reported for reference
Pistol Star (V4647 Sagittarii) 306[32] ?
Rasalgethi A (α Herculis) 284±60 (264303)[33] L/Teff
Wezen (δ Canis Majoris) 215±66[34] AD Thirty-sixth brightest star in the night sky.[29]
Orbit of Earth (~1 AU) 214[5][b] Reported for reference
Enif (ε Pegasi) 210.37 – 210.69[35] ?
Suhail (λ Velorum) 210[36] ?
Deneb (α Cygni) 203±17[37] ? Eighteenth brightest star in the night sky.[29]
Orbit of Venus 158.6[5][b] Reported for reference
Orbit of Mercury 82.984.6[5][b] Reported for reference
Vega (α Lyrae) 2.726±0.006 × 2.418±0.012[38] Fifth brightest star in the night sky.[29]
Reported for reference
Sun 1 The largest object in the Solar System.
Reported for reference

Magellanic Clouds

List of the largest known stars in the Magellanic Clouds
Star name Solar radii
(Sun = 1)
Galaxy Method[a] Notes
LI-LMC 60 1,765[39] Large Magellanic Cloud L/Teff
WOH G64 1,540[40] Large Magellanic Cloud L/Teff Surrounded by a large dust cloud.
W60 B90 (WOH S264) 1,390+130
−110
[41]
Large Magellanic Cloud L/Teff Further investigation is needed to constrain the luminosity and radius with more certainty.[41]
UCAC2 2674864 (HV 2834) 990+115
−100
[41]
Large Magellanic Cloud L/Teff
HV 12185 890+55
−65
[41]
Large Magellanic Cloud L/Teff
HV 12793 880+45
−65
[41]
Large Magellanic Cloud L/Teff
WOH S57 875+70
−60
[41]
Large Magellanic Cloud L/Teff
SP77 28-2 825±60[41] Large Magellanic Cloud L/Teff
W61 19-24 780+50
−70
[41]
Large Magellanic Cloud L/Teff
PMM4 64 730+75
−65
[41]
Small Magellanic Cloud L/Teff
WOH S374 610+75
−60
[41]
Large Magellanic Cloud L/Teff

M31 and M33

List of the largest known stars in other galaxies (within the Local Group)
Star name Solar radii
(Sun = 1)
Galaxy Method[a] Notes
LGGS J004124.80+411634.7 1,240[42] Andromeda Galaxy L/Teff
LGGS J004035.08+404522.3 1,230[42] Andromeda Galaxy L/Teff
LGGS J004047.82+410936.4 1,010[42] Andromeda Galaxy L/Teff
LGGS J004424.94+412322.3 945[42] Andromeda Galaxy L/Teff
LGGS J004501.30+413922.5 910[42] Andromeda Galaxy L/Teff
LGGS J004447.08+412801.7 825[42] Andromeda Galaxy L/Teff
LGGS J004255.95+404857.5 785[42] Andromeda Galaxy L/Teff
LGGS J003913.40+403714.2 640[42] Andromeda Galaxy L/Teff
LGGS J004428.71+420601.6 605[42] Andromeda Galaxy L/Teff
LGGS J004607.45+414544.6 560[42] Andromeda Galaxy L/Teff
LGGS J003902.20+403907.3 525[42] Andromeda Galaxy L/Teff
LGGS J003857.29+404053.6 500[42] Andromeda Galaxy L/Teff


Other galaxies (within the Local Group)

List of the largest known stars in other galaxies (within the Local Group)
Star name Solar radii
(Sun = 1)
Galaxy Method[a] Notes


Sextans A 10 995±130[43] Sextans A L/Teff
Sextans A 5 870±145[43] Sextans A L/Teff
LeoA 7 786.5[44] Leo A L/Teff
Sextans A 7 710±100[43] Sextans A L/Teff
IC 10 3 685±90[43] IC 10 L/Teff
WLM 14 610±80[43] WLM L/Teff
Sextans B 1 565±70[43] Sextans B L/Teff
IC 1613 2 560±70[43] IC 1613 L/Teff
WLM 12 430±70[43] WLM L/Teff
IC 10 5 420±50[43] IC 10 L/Teff
Sextans B 2 405±90[43] Sextans B L/Teff
LeoA 75 404.4[44] Leo A L/Teff
WLM 13 380±50[43] WLM L/Teff
LeoA 90 353.9[44] Leo A L/Teff
LeoA 143 353.7[44] Leo A L/Teff
Sextans A 6 350±40[43] Sextans A L/Teff
Pegasus 1 340±50[43] Pegasus Dwarf L/Teff
Sextans A 4 335±40[43] Sextans A L/Teff
WLM 11 310±50[43] WLM L/Teff
IC 1613 1 300±40[43] IC 1613 L/Teff
IC 10 2 280±30[43] IC 10 L/Teff
Pegasus 2 260±40[43] Pegasus Dwarf L/Teff
Sextans A 8 260±60[43] Sextans A L/Teff
LeoA 203 244[44] Leo A L/Teff Known red supergiant[45]
Sextans A 9 230±50[43] Sextans A L/Teff
LeoA 98 211.2[44] Leo A L/Teff
IC 10 4 200±25[43] IC 10 L/Teff
IC 10 1 165±60[43] IC 10 L/Teff
IC 10 6 160±25[43] IC 10 L/Teff
Phoenix 3 90±15[43] Phoenix Dwarf L/Teff

Outside the Local Group

List of the largest known stars in galaxies outside the Local Group
Star name Solar radii
(Sun = 1)
Galaxy Group Method[a] Notes
NGC 2363-V1 194356[46] NGC 2363 M81 Group L/Teff

Notes

  1. ^ a b c d e Methods for calculating the radius:
  2. ^ a b c d e f At the J2000 epoch

References

  1. ^ Mamajek, E. E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P. D.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, E.; Folkner, W. M.; Haberreiter, M. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties". arXiv:1510.07674.
  2. ^ Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (July 2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645: 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417. ISSN 0004-637X.
  3. ^ Ren, Yi; Jiang, Bi-Wei (July 2020). "On the Granulation and Irregular Variation of Red Supergiants". The Astrophysical Journal. 898: 24. arXiv:2006.06605. Bibcode:2020ApJ...898...24R. doi:10.3847/1538-4357/ab9c17. ISSN 0004-637X.
  4. ^ Fok, Thomas K. T.; Nakashima, Jun-ichi; Yung, Bosco H. K.; Hsia, Chih-Hao; Deguchi, Shuji (20 November 2012). "MASER OBSERVATIONS OF WESTERLUND 1 AND COMPREHENSIVE CONSIDERATIONS ON MASER PROPERTIES OF RED SUPERGIANTS ASSOCIATED WITH MASSIVE CLUSTERS". The Astrophysical Journal. 760 (1): 65. doi:10.1088/0004-637X/760/1/65.
  5. ^ a b c d e f "HORIZONS Web-Interface". ssd.jpl.nasa.gov. Retrieved 2021-09-25.
  6. ^ a b c Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy and Astrophysics. 554: A76. arXiv:1305.6179. Bibcode:2013A&A...554A..76A. doi:10.1051/0004-6361/201220920. ISSN 0004-6361.
  7. ^ Wittkowski, M.; Arroyo-Torres, B.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Guirado, J. C. (January 2017). "VLTI/AMBER spectro-interferometry of the late-type supergiants V766 Cen (=HR 5171 A), σ Oph, BM Sco, and HD 206859". Astronomy and Astrophysics. 597: A9. arXiv:1610.01927. Bibcode:2017A&A...597A...9W. doi:10.1051/0004-6361/201629349. ISSN 0004-6361.
  8. ^ a b c d e f g h i j k l m Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020). "Exploring the Mass Loss Histories of the Red Supergiants". The Astronomical Journal. 160 (3): 145. arXiv:2008.01108. Bibcode:2020AJ....160..145H. doi:10.3847/1538-3881/abab15. S2CID 220961677.
  9. ^ a b c d e f g h i j k l m n o Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (August 2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought". The Astrophysical Journal. 628: 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901. ISSN 0004-637X.
  10. ^ Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (April 2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy and Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126. ISSN 0004-6361.
  11. ^ a b c d e f g h i Vallenari, A.; Brown, A. G. A.; Prusti, T. (13 June 2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940. ISSN 0004-6361.
  12. ^ a b c d Arévalo, Aura de Las Estrellas Ramírez (July 2018). The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (text thesis). University of São Paulo. doi:10.11606/D.14.2019.tde-12092018-161841.
  13. ^ Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M. -A.; Kamiński, T. (January 2014). "IRC -10414: a bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society. 437: 843–856. arXiv:1310.2245. Bibcode:2014MNRAS.437..843G. doi:10.1093/mnras/stt1943. ISSN 0035-8711.
  14. ^ Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (November 2006). "The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni". Publications of the Astronomical Society of the Pacific. 118: 1533–1544. Bibcode:2006PASP..118.1533T. doi:10.1086/508905. ISSN 0004-6280.
  15. ^ a b c d e f g h i j k De Beck, E.; Decin, L.; De Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics. 523: A18. arXiv:1008.1083. Bibcode:2010A&A...523A..18D. doi:10.1051/0004-6361/200913771. S2CID 16131273.
  16. ^ Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Miyawaki, Ryosuke; Miyoshi, Makoto; Miyazaki, Atsushi (April 2020). "Sub-millimeter detection of a Galactic center cool star IRS 7 by ALMA". Publications of the Astronomical Society of Japan. 72: 36. arXiv:2002.01620. Bibcode:2020PASJ...72...36T. doi:10.1093/pasj/psaa013. ISSN 0004-6264.
  17. ^ Rodríguez-Coira, G.; Gravity Collaboration (2021). "The Molecular Layer of GCIRS7". New Horizons in Galactic Center Astronomy and Beyond. 528: 397. Bibcode:2021ASPC..528..397R.
  18. ^ van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants". Astronomy and Astrophysics. 631: A48. arXiv:1910.02460. Bibcode:2019A&A...631A..48V. doi:10.1051/0004-6361/201834358. S2CID 203836020.
  19. ^ a b c d Stassun K.G.; et al. (October 2019). "The revised TESS Input Catalog and Candidate Target List". The Astronomical Journal. 158 (4): 138. arXiv:1905.10694. Bibcode:2019AJ....158..138S. doi:10.3847/1538-3881/ab3467. S2CID 166227927.
  20. ^ Arroyo-Torres, B.; Wittkowski, M.; Chiavassa, A.; Scholz, M.; Freytag, B.; Marcaide, J. M.; Hauschildt, P. H.; Wood, P. R.; Abellan, F. J. (March 2015). "What causes the large extensions of red supergiant atmospheres?. Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres". Astronomy and Astrophysics. 575: A50. arXiv:1501.01560. Bibcode:2015A&A...575A..50A. doi:10.1051/0004-6361/201425212. ISSN 0004-6361.
  21. ^ Norris, Ryan P.; Baron, Fabien R.; Monnier, John D.; Paladini, Claudia; Anderson, Matthew D.; Martinez, Arturo O.; Schaefer, Gail H.; Che, Xiao; Chiavassa, Andrea; Connelley, Michael S.; Farrington, Christopher D.; Gies, Douglas R.; Kiss, László L.; Lester, John B.; Montargès, Miguel; Neilson, Hilding R.; Majoinen, Olli; Pedretti, Ettore; Ridgway, Stephen T.; Roettenbacher, Rachael M.; Scott, Nicholas J.; Sturmann, Judit; Sturmann, Laszlo; Thureau, Nathalie; Vargas, Norman; Ten Brummelaar, Theo A. (2021). "Long Term Evolution of Surface Features on the Red Supergiant AZ Cyg". The Astrophysical Journal. 919 (2): 124. arXiv:2106.15636. Bibcode:2021ApJ...919..124N. doi:10.3847/1538-4357/ac0c7e. S2CID 235683123.
  22. ^ Xu, Shuangjing; Zhang, Bo; Reid, Mark J.; Menten, Karl M.; Zheng, Xingwu; Wang, Guangli (May 2018). "The Parallax of the Red Hypergiant VX Sgr with Accurate Tropospheric Delay Calibration". The Astrophysical Journal. 859: 14. arXiv:1804.00894. Bibcode:2018ApJ...859...14X. doi:10.3847/1538-4357/aabba6. ISSN 0004-637X.
  23. ^ Josselin, E.; Plez, B. (July 2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy and Astrophysics. 469: 671–680. arXiv:0705.0266. Bibcode:2007A&A...469..671J. doi:10.1051/0004-6361:20066353. ISSN 0004-6361.
  24. ^ Montargès, M.; Homan, W.; Keller, D.; Clementel, N.; Shetye, S.; Decin, L.; Harper, G. M.; Royer, P.; Winters, J. M.; Le Bertre, T.; Richards, A. M. S. (May 2019). "NOEMA maps the CO J = 2 - 1 environment of the red supergiant μ Cep". Monthly Notices of the Royal Astronomical Society. 485: 2417–2430. arXiv:1903.07129. Bibcode:2019MNRAS.485.2417M. doi:10.1093/mnras/stz397. ISSN 0035-8711.
  25. ^ van Belle, G. T.; Creech-Eakman, M. J.; Hart, A. (April 2009). "Supergiant temperatures and linear radii from near-infrared interferometry". Monthly Notices of the Royal Astronomical Society. 394: 1925–1935. arXiv:0811.4239. Bibcode:2009MNRAS.394.1925V. doi:10.1111/j.1365-2966.2008.14146.x. ISSN 0035-8711.
  26. ^ a b c Van Belle, G. T.; Thompson, R. R.; Creech-Eakman, M. J. (2002). "Angular Size Measurements of Mira Variable Stars at 2.2 Microns. II". The Astronomical Journal. 124 (3): 1706–1715. arXiv:astro-ph/0210167. Bibcode:2002AJ....124.1706V. doi:10.1086/342282. S2CID 33832649.
  27. ^ Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E.; Thureau, N.; ten Brummelaar, T. A.; Ridgway, S. T. (April 2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal. 785: 46. arXiv:1405.4032. Bibcode:2014ApJ...785...46B. doi:10.1088/0004-637X/785/1/46. ISSN 0004-637X.
  28. ^ Joyce, Meridith; Leung, Shing-Chi; Molnár, László; Ireland, Michael; Kobayashi, Chiaki; Nomoto, Ken'ichi (October 2020). "Standing on the Shoulders of Giants: New Mass and Distance Estimates for Betelgeuse through Combined Evolutionary, Asteroseismic, and Hydrodynamic Simulations with MESA". The Astrophysical Journal. 902: 63. arXiv:2006.09837. Bibcode:2020ApJ...902...63J. doi:10.3847/1538-4357/abb8db. ISSN 0004-637X.
  29. ^ a b c d e Hoffleit, D.; Warren, W. H. Jr. (November 1995). "VizieR Online Data Catalog: Bright Star Catalogue, 5th Revised Ed. (Hoffleit+, 1991)". VizieR Online Data Catalog: V/50. Bibcode:1995yCat.5050....0H.
  30. ^ Messineo, M.; Brown, A. G. A (May 2019). "A Catalog of Known Galactic K-M Stars of Class I Candidate Red Supergiants in Gaia DR2". The Astronomical Journal. 158 (1): 20. arXiv:1905.03744. Bibcode:2019AJ....158...20M. doi:10.3847/1538-3881/ab1cbd. S2CID 148571616.
  31. ^ Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy and Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063. ISSN 0004-6361.
  32. ^ Najarro, Francisco; Figer, Don F.; Hillier, D. John; Geballe, T. R.; Kudritzki, Rolf P. (February 2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691: 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816. ISSN 0004-637X.
  33. ^ Moravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (December 2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3". The Astronomical Journal. 146: 148. arXiv:1308.1632. Bibcode:2013AJ....146..148M. doi:10.1088/0004-6256/146/6/148. ISSN 0004-6256.
  34. ^ Davis, J.; Booth, A. J.; Ireland, M. J.; Jacob, A. P.; North, J. R.; Owens, S. M.; Robertson, J. G.; Tango, W. J.; Tuthill, P. G. (October 2007). "The Emergent Flux and Effective Temperature of δ Canis Majoris". Publications of the Astronomical Society of Australia. 24: 151–158. arXiv:0709.3873. Bibcode:2007PASA...24..151D. doi:10.1071/AS07017. ISSN 1323-3580.
  35. ^ Stock, S.; Reffert, S.; Quirrenbach, A. (May 2018). "VizieR Online Data Catalog: Stellar parameters of 372 giant stars (Stock+, 2018)". VizieR On-line Data Catalog. 361 (33): 600. Bibcode:2018yCat..36160033S.
  36. ^ Carpenter, Kenneth G.; Robinson, Richard D.; Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Mullan, Dermott J. (1999). "GHRS Observations of Cool, Low-Gravity Stars. V. The Outer Atmosphere and Wind of the Nearby K Supergiant λ Velorum". The Astrophysical Journal. 521 (1): 382–406. Bibcode:1999ApJ...521..382C. doi:10.1086/307520.
  37. ^ Schiller, F.; Przybilla, N. (March 2008). "Quantitative spectroscopy of Deneb". Astronomy and Astrophysics. 479: 849–858. arXiv:0712.0040. Bibcode:2008A&A...479..849S. doi:10.1051/0004-6361:20078590. ISSN 0004-6361.
  38. ^ Monnier, J. D.; Che, Xiao; Zhao, Ming; Ekström, S.; Maestro, V.; Aufdenberg, Jason; Baron, F.; Georgy, C.; Kraus, S.; McAlister, H.; Pedretti, E. (December 2012). "Resolving Vega and the Inclination Controversy with CHARA/MIRC". The Astrophysical Journal. 761: L3. arXiv:1211.6055. Bibcode:2012ApJ...761L...3M. doi:10.1088/2041-8205/761/1/L3. ISSN 0004-637X.
  39. ^ Beasor, Emma R.; Smith, Nathan (2022-05-01). "The extreme scarcity of dust-enshrouded red supergiants: consequences for producing stripped stars via winds". arXiv:2205.02207.
  40. ^ Levesque, Emily M.; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". The Astronomical Journal. 137 (6): 4744. arXiv:0903.2260. Bibcode:2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744. S2CID 18074349.
  41. ^ a b c d e f g h i j de Wit, S.; Bonanos, A.Z.; Tramper, F.; Yang, M.; Maravelias, G.; Boutsia, K.; Britavskiy, N.; Zapartas, E. (2022-09-26). "Properties of luminous red supergiant stars in the Magellanic Clouds". Astronomy and Astrophysics: 17. arXiv:2209.11239.
  42. ^ a b c d e f g h i j k l Massey, Philip; Silva, David.R; Levesque, Emily M.; Plez, Betrand; Olsen, Knut, A.G.; Clayton, Geoffrey C.; Meynet, Georges; Maeder, Andre (September 2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal. 703 (1): 420-440. doi:10.1088/0004-637X/703/1/420. Retrieved April 18, 2022.
  43. ^ a b c d e f g h i j k l m n o p q r s t u v w x Britavskiy, N. E.; Bonanos, A. Z.; Herrero, A.; Cerviño, M.; García-Álvarez, D.; Boyer, M. L.; Masseron, T.; Mehner, A.; McQuinn, K. B. W. (November 2019). "Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group". Astronomy and Astrophysics. 631: A95. arXiv:1909.13378. Bibcode:2019A&A...631A..95B. doi:10.1051/0004-6361/201935212. ISSN 0004-6361.
  44. ^ a b c d e f Jones, Olivia C.; Maclay, Matthew T.; Boyer, Martha L.; Meixner, Margaret; McDonald, Iain; Meskhidze, Helen (2018-02-01). "Near-infrared Stellar Populations in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A". The Astrophysical Journal. 854: 117. doi:10.3847/1538-4357/aaa542. ISSN 0004-637X.
  45. ^ Ren, Yi; Jiang, Biwei; Yang, Ming; Wang, Tianding; Ren, Tongtian (2021-12-01). "The Sample of Red Supergiants in 12 Low-mass Galaxies of the Local Group". The Astrophysical Journal. 923 (2): 232. doi:10.3847/1538-4357/ac307b. ISSN 0004-637X.
  46. ^ Petit, V.; Drissen, L.; Crowther, P. A. (2005). "Quantitative analysis of STIS spectra of NGC 2363-V1". The Fate of the Most Massive Stars. 332: 159. Bibcode:2005ASPC..332..157P.

See also

External links