Type IV collagen

From Justapedia, unleashing the power of collective wisdom
(Redirected from Collagen IV)
Jump to navigation Jump to search

Collagen IV (ColIV or Col4) is a type of collagen found primarily in the basal lamina. The collagen IV C4 domain at the C-terminus is not removed in post-translational processing, and the fibers link head-to-head, rather than in parallel. Also, collagen IV lacks the regular glycine in every third residue necessary for the tight, collagen helix. This makes the overall arrangement more sloppy with kinks. These two features cause the collagen to form in a sheet, the form of the basal lamina. Collagen IV is the more common usage, as opposed to the older terminology of "type-IV collagen".[citation needed] Collagen IV exists in all metazoan phyla, to whom they served as an evolutionary stepping stone to multicellularity.[1]

There are six human genes associated with it:[2]

Clinical significance

The alpha-3 subunit (COL4A3) of collagen IV is thought to be the antigen implicated in Goodpasture syndrome, wherein the immune system attacks the basement membranes of the glomeruli and the alveoli upon the antigenic site on the alpha-3 subunit becomes unsequestered due to environmental exposures.

Goodpasture syndrome presents with nephritic syndrome and hemoptysis. Microscopic evaluation of biopsied renal tissue will reveal linear deposits of Immunoglobulin G by immunofluorescence. This is classically in young adult males.

Mutations to the genes coding for collagen IV lead to Alport syndrome. This will cause thinning and splitting of the glomerular basement membrane. It will present as isolated hematuria, sensorineural hearing loss, and ocular disturbances and is passed on genetically, usually in an X-linked manner, although there are rarer autosomal forms.

Liver fibrosis and cirrhosis are associated with the deposition of collagen IV in the liver. Serum Collagen IV concentrations correlate with hepatic tissue levels of collagen IV in subjects with alcoholic liver disease and hepatitis C and fall following successful therapy.[3][4]

Mutations in COL4A1 exons 24 and 25 are associated with HANAC (autosomal dominant hereditary angiopathy with nephropathy, aneurysms, and muscle cramps).[5] It has also been confirmed that mutations in the COL4A1 gene occur in some patients with porencephaly and schizencephaly.[6][7]

In humans, a novel mutation of the COL4A1 gene coding for collagen type IV was found to be associated with autosomal dominant congenital cataract in a Chinese family. This mutation was not found in unaffected family members or in 200 unrelated controls. In this study, sequence analysis confirmed that the Gly782 amino acid residue was highly conserved.[8] This report of a new mutation in the COL4A1 gene is the first report of a non-syndromic autosomal dominant congenital cataract that highlights an important role for collagen type IV in the physiological and optical properties of the lens.[8]

Additionally, in the cardiovascular field, the COL4A1 and COL4A2 regions on chromosome 13q34 are a highly replicated locus for coronary artery disease. In a normal wall of arteries, collagen type IV acts to inhibit smooth muscle cell proliferation. Accordingly, it was demonstrated that protein expression of collagen type IV in human vascular smooth muscle cells is regulated by both SMAD3 protein and TGFβ mediated stimulation of mRNA.[9] Altogether, it was concluded that the pathogenesis of coronary artery disease may be regulated by COL4A1 and COL4A2 genes.[9]

An autosomal recessive encephalopathy associated with mutations in this gene has also been reported.[10]

Increased glomerular and mesangial deposition of collagen IV occurs in diabetic nephropathy and increased urinary levels are associated with the extent of renal injury.[11]

See also

  • Spongin, a variant of this collagen type found in some animals

References

  1. ^ Boute, Nicolas; Exposito, Jean-Yves; Boury-Esnault, Nicole; Vacelet, Jean; Noro, Nobuhiro; Miyazaki, Koyomi; Yoshizato, Katsutoshi; Garrone, Robert (1996). "Type IV collagen in sponges, the missing link in basement membrane ubiquity". Biology of the Cell. 88 (1–2): 37–44. doi:10.1016/S0248-4900(97)86829-3. PMID 9175266. S2CID 32293092.
  2. ^ Khoshnoodi, Jamshid; Pedchenko, Vadim; Hudson, Billy G (2008). "Mammalian collagen IV". Microscopy Research and Technique. 71 (5): 357–70. doi:10.1002/jemt.20564. PMC 4788096. PMID 18219669.
  3. ^ Tsutsumi, Mikihiro; Takase, Shujiro; Urashima, Sachio; Ueshima, Yasuhiro; Kawahara, Hiromu; Takada, Akira (1996). "Serum Markers for Hepatic Fibrosis in Alcoholic Liver Disease: Which is the Best Marker, Type III Procollagen, Type IV Collagen, Laminin, Tissue Inhibitor of Metalloproteinase, or Prolyl Hydroxylase?". Alcoholism: Clinical and Experimental Research. 20 (9): 1512–7. doi:10.1111/j.1530-0277.1996.tb01692.x. PMID 8986196.
  4. ^ Yabu, K; Kiyosawa, K; Mori, H; Matsumoto, A; Yoshizawa, K; Tanaka, E; Furuta, S (2009). "Serum Collagen Type IV for the Assessment of Fibrosis and Resistance to Interferon Therapy in Chronic Hepatitis C". Scandinavian Journal of Gastroenterology. 29 (5): 474–9. doi:10.3109/00365529409096841. PMID 7518613.
  5. ^ Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C, Verpont MC, Marro B, Desmettre T, Cohen SY, Roullet E, Dracon M, Fardeau M, Van Agtmael T, Kerjaschki D, Antignac C, Ronco P (December 2007). "COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps". The New England Journal of Medicine. 357 (26): 2687–95. doi:10.1056/NEJMoa071906. PMID 18160688.
  6. ^ Yoneda Y, Haginoya K, Kato M, Osaka H, Yokochi K, Arai H, Kakita A, Yamamoto T, Otsuki Y, Shimizu S, Wada T, Koyama N, Mino Y, Kondo N, Takahashi S, Hirabayashi S, Takanashi J, Okumura A, Kumagai T, Hirai S, Nabetani M, Saitoh S, Hattori A, Yamasaki M, Kumakura A, Sugo Y, Nishiyama K, Miyatake S, Tsurusaki Y, Doi H, Miyake N, Matsumoto N, Saitsu H (January 2013). "Phenotypic spectrum of COL4A1 mutations: porencephaly to schizencephaly". Annals of Neurology. 73 (1): 48–57. doi:10.1002/ana.23736. PMID 23225343. S2CID 3218598.
  7. ^ Smigiel R, Cabala M, Jakubiak A, Kodera H, Sasiadek MJ, Matsumoto N, Sasiadek MM, Saitsu H (April 2016). "Novel COL4A1 mutation in an infant with severe dysmorphic syndrome with schizencephaly, periventricular calcifications, and cataract resembling congenital infection". Birth Defects Research. Part A, Clinical and Molecular Teratology. 106 (4): 304–7. doi:10.1002/bdra.23488. PMID 26879631.
  8. ^ a b Xia XY, Li N, Cao X, Wu QY, Li TF, Zhang C, Li WW, Cui YX, Li XJ, Xue CY (2014-01-01). "A novel COL4A1 gene mutation results in autosomal dominant non-syndromic congenital cataract in a Chinese family". BMC Medical Genetics. 15: 97. doi:10.1186/s12881-014-0097-2. PMC 4236509. PMID 25124159.
  9. ^ a b Turner AW, Nikpay M, Silva A, Lau P, Martinuk A, Linseman TA, Soubeyrand S, McPherson R (October 2015). "Functional interaction between COL4A1/COL4A2 and SMAD3 risk loci for coronary artery disease". Atherosclerosis. 242 (2): 543–52. doi:10.1016/j.atherosclerosis.2015.08.008. PMID 26310581.
  10. ^ Yaramis A, Lochmüller H, Töpf A, Sonmezler E, Yilmaz E, Hiz S, Yis U, Gungor S, Ipek Polat A, Edem P, Beltran S, Laurie S, Yaramis A, Horvath R, Oktay Y (2020) COL4A1-related autosomal recessive encephalopathy in 2 Turkish children. Neurol Genet 6(1):e392
  11. ^ Okonogi, H; Nishimura, M; Utsunomiya, Y; Hamaguchi, K; Tsuchida, H; Miura, Y; Suzuki, S; Kawamura, T; Hosoya, T; Yamada, K (2001). "Urinary type IV collagen excretion reflects renal morphological alterations and type IV collagen expression in patients with type 2 diabetes mellitus". Clinical Nephrology. 55 (5): 357–64. PMID 11393380. INIST:985198.

External links